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Abstract

As cyber-attacks against critical infrastructure become more frequent,
it is increasingly important to be able to rapidly identify and respond to
these threats. Therefore, we are investigating using multiple independent
systems with overlapping electrical measurements to more rapidly iden-
tify anomalies. While prior research has explored the benefits of fusing
measurements, the possibility of overlapping measurements from an exist-
ing electrical system has not been investigated. To that end, we explore
the potential benefits of combining overlapping measurements both to im-
prove the speed/accuracy of anomaly detection and to provide additional
validation of collected measurements.

1 Introduction

In recent years, cyber attacks have become more frequent and increased in com-
plexity and sophistication. The power grid is vulnerable to these attacks due
in large part to an increase in inter-connectivity caused by Supervisory Control
and Data Acquisition (SCADA) system modernization used to monitor and con-
trol parts of the power grid. Newer digital devices with increased connectivity
can provide advantages for power grid operation but can also increase risk from
potential cyber threats [8]. A cyber attack on the power grid can de-energize
power system components and aggregate operating conditions by causing over-
loading and instability [7]. The 2015 Ukraine cyber attack exemplifies the threat
that cyber attacks can pose to the power grid.

Many consumers in Ukraine temporarily lost power due to a cyber attack
exploiting Windows vulnerability CVE-2014-4114. A phishing email was opened
that installed BlackEnergy malware on the system. This vulnerability was not
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a zero-day vulnerability and the operator should have been aware of the vulner-
ability in the system and taken action beforehand [8].

While anomaly detection would not have prevented this attack, it would have
been able to alert the operator about unusual activity in the system potentially
allowing them to respond more rapidly. Thus, anomaly detection allows for an
early detection of cyber-intrusions [7]. Anomaly detection identifies potential
issues in the system and can therefore enable operators to respond to malicious
activity as it happens. Therefore, it can be seen as an early warning mechanism
[7].

In this paper, we are describing our approach to improve the speed and
accuracy of anomaly detection by using overlapping electrical measurements
from two independent systems taken at different points throughout Los Alamos
National Laboratory’s power grid. In Section 2, we explore related works and
their significance. In Section 3, background information is provided for a better
understanding of our implementation described in Section 4. A conclusion is
provided and possible future work approaches are mentioned in Section 5 and
Section 6, respectively.

This paper’s contributions are as followed:

• detail approaches used for dealing with overlapping electrical measure-
ments

• compare results of different anomaly detection algorithms applied on elec-
trical measurements

• (work in progress) show that multiple independent measurements improve
accuracy of anomaly detection

2 Related Works

[2] is a related work that also uses electrical measurements for anomaly detec-
tion. In [2], a neuro-cognitive science inspired architecture, HTM, was developed
to perform unsupervised anomaly detection. While electrical measurements
(uPMU data) were used for this approach, the anomaly detection is real-time,
involves hierarchical temporal memory, but does not include overlapping elec-
trical measurements like in our case.

[4] and [1] use dynamic time warping (DTW) related to the power grid;
however, [4] applies it to smart meter readings for lowering the complexity of
power disaggregation. [1] applies DTW to electric utility data to cluster the
electric utility net data based on the distance measure to improve operation
for the next day. None of these papers apply DTW with the goal to improve
anomaly detection.

However, [3] uses DTW for anomaly detection. Instead of using electrical
measurements, it is used on network traffic data to detect network anomalies.
The network traffic is decomposed into control and data planes. Based on
the DTW distance between these two, the network activities are classified as
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either benign or anomalous. In summary, the related works do not address
the challenge of improving anomaly detection based on overlapping electrical
measurements.

3 Background

The data set used for this paper originates from Los Alamos National Labo-
ratory’s power grid from two independent overlapping electrical measurement
systems: ION and HIST. The data set was collected in December 2020 and
contains 744-756 ION data points and 534,686 HIST data points for each time
series. HIST data is collected at a higher frequency (approximately every 5
seconds) while ION is collected at a much lower frequency (approximately every
hour). A subset of measurement points are common to both systems and are
therefore said to be overlapping.

To find out which measurements are overlapping, we are using the DTW
algorithm. It finds the similarity between two time series by calculating the
distance between them. DTW involves a non-linear optimal alignment which
ensures that similar time series match each other even if they are out of phase
on the x-axis or require compression or expansion. In our case DTW is used to
account for the difference in frequency between the two systems as well as any
potentially minor discrepancies in clock synchronization. DTW has applications
in many domains such as robotics, data mining,and manufacturing [6].

The anomaly detection algorithms used in this paper to compare anoma-
lies between the overlapping time series include autoregression, level shift, and
rolling average. All of these algorithms are statistical unsupervised anomaly
detection approaches. Autoregression looks at autoregressive behavior changes
to detect anomalies. Level shift is often used when the data has a lot of outliers
because it is not as sensitive to spikes in data. It works by taking two sliding
windows and comparing their median values to detect a shift of values. Rolling
average takes each value and compares it to its previous value [5].

4 Implementation and Results

4.1 Dynamic Time Warping

To determine similarity among the two different systems, the DTW algorithm
is used. Due to the overhead of the DTW, the fast version was implemented.
Two libraries that we considered include FastDTW and DTAIDistance’s fast
implementation of the DTW algorithm. After implementing both of them, we
decided to continue working with DTAIDistance library due to its faster run time
compared to FastDTW. Both gave similar results; however, DTAIDistance’s
faster run-time can be explained by the fact that it is implemented in C, which
includes Cython as a dependency.

We considered three approaches to obtain a viable sample of the data:
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Run Number HIST step size ION step size Run-time (s)
1 100 2 2318.6
2 1000 1 616.7
3 1000 2 342.8
4 2000 2 222.6
5 3000 4 108.6
6 5000 7 65.7

Table 1: Step Size Running Times.

Run Number Point Amount Run-time (s)
7 100 24.3
8 200 38.6

Table 2: Point Amount Running Times.

1. step size, which includes collecting data points at different steps

2. certain amount of points, for example, collecting the first 100 points

3. range of dates, for example, a day’s worth of data

For step-size, we collected a total of 6 runs, which are depicted in Table 1.
The smaller the steps, the more data points, and the longer the algorithm takes
to run to compare all of the time series with the DTW algorithm. For certain
amount of points, we did two runs total where we took the first 100 and 200
points as seen in Table 2. Similar to the step runs, as the amount of points
increase so does the run-time.

For date range, one run was completed including data over a period of three
days as can be seen in Table 3. However, this method took a long time compared
to the others because the date had to be filtered beforehand which is not included
in the run-time listed in the table. However, by reducing the data range we were
able to reduce the step size and include more data points.

For each run, the DTW calcutes the distance for each ION and HIST pair
and sorts them based on distance. The lower the distance, the more similar
the data. The DTW distance results for the first 200 points stayed more stable
distance-wise compared to the step size and three day range results, due to
deviations in the data appearing later. The first 200 points and step size results

Run Number Date Range HIST step size ION step size Run-time (s)
9 3 days 50 1 191.8

Table 3: Date Range Running Times.
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(a) step size 100 HIST, 2 ION (b) three day range and step size

(c) first 200 points

Figure 1: Top ten results of the different runs.

have several of the same matches and the top two results are the same. The
three day results are not as similar as the other two, but still have some of the
same matches in the top ten. The results of the runs are in Figure 1. At the end,
we decided to settle for the step size results as an accurate similarity ranking
due to its inclusion of the whole range of data and manageable run-time.

The four most similar results from the DTW 100 and 2 step size are depicted
in Figure 2. Most of the points for these graphs are concentrated on y = 0, with
some HIST outlier points deviating from the axis. The difference in pattern
between the time series when looking at the bottom two graphs within each
figure could mean one of two things, they could be different measurements;
or they are the same but the ION measurements are not measured at a high
enough frequency to record the spikes that appear in their HIST counterpart.
The representative sample for the HIST measurements also does not include all
the spikes that the actual measurements do because of the step size. This was
the case with all the different methods of choosing a representative sample. The
sample data is drawn in the top right corner for each graph. After we had these
results, we used the four most similar matches from the DTW 100 HIST, 2 ION
steps for anomaly detection.
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(a) First Ranked Match (b) Second Ranked Match

(c) Third Ranked Match (d) Fourth Ranked Match

Figure 2: Top Four Results Step-size.
Top right corner of each graph includes the step size drawn.

4.2 Anomaly Detection

We took the top four matches of the DTW results and used autoregression,
level shift, and rolling average on them. Autoregression and rolling average
identified very similar anomalies. Level shift detected no anomalies, but it is less
susceptible to time series containing noisy data. However, both autoregression
and rolling average detected differences in anomalies among DTW matches as
displayed in Figure 3 and 4. Figure 3 has anomalies mostly along its spikes. In
comparison, Figure 4 is a straight line with no deviations and therefore has no
anomalies. Since autoregression works by comparing its previous value to the
current one, the spikes should appear one at a time which also highlights that
the step size sample approach might have easily missed the spikes because they
are relatively rare. This mismatch between anomalies for the same measurement
could indicate certain types of data tampering. Further investigation needs to
be done to understand the cause of mismatched anomalies between the HIST
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and ION measurements.

Figure 3: Autoregression HIST 40 S

Figure 4: Autoregression ION 4 3472

5 Conclusions

The overall goal of this research is to improve the accuracy and speed of anomaly
detection by using overlapping electrical measurements from the Los Alamos
National Laboratory power grid and to validate the measurements. This is es-
pecially helpful when trying to detect cyber attacks because anomaly detection
can be seen as an early warning system. The DTW algorithm found similar
measurements that can be used for anomaly detection. The difference in fre-
quency between the two independent system introduces challenges that are most
likely impacting the DTW results and the difference in anomalies.

6 Future Work

Future work includes looking at other statistical methods that assess when the
differences in anomalies are relevant enough that the measurements are not the
same. In addition, exploring different ways to filter the data before running
DTW to reduce run times and improve the scalability of the approach. Using
the pearson correlation coefficient would be a possible option to find similar
time series within each system and then filter based on the results.

Another possible area for future work includes determining which anomaly
detection algorithm is the most accurate one. A possible approach would be to
implement a generative model to insert and simulate an artificial anomaly and
see which algorithm detects it. Or generating a synthetic data set and label it
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to make this a supervised anomaly detection problem which has more known
methods.

References

[1] Jason R. Ausmus et al. “Improving the Accuracy of Clustering Electric
Utility Net Load Data using Dynamic Time Warping”. In: 2020 IEEE/PES
Transmission and Distribution Conference and Exposition (T D). 2020,
pp. 1–5. doi: 10.1109/TD39804.2020.9299915.

[2] Anomadarshi Barua et al. “Hierarchical Temporal Memory Based Ma-
chine Learning for Real-Time, Unsupervised Anomaly Detection in Smart
Grid: WiP Abstract”. In: 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS). 2020, pp. 188–189. doi: 10.1109/
ICCPS48487.2020.00027.

[3] Diab M. Diab et al. “Anomaly Detection Using Dynamic Time Warping”.
In: 2019 IEEE International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC). 2019, pp. 193–198. doi: 10.1109/CSE/EUC.
2019.00045.

[4] Georgia Elafoudi, Lina Stankovic, and Vladimir Stankovic. “Power disag-
gregation of domestic smart meter readings using dynamic time warping”.
In: 2014 6th International Symposium on Communications, Control and
Signal Processing (ISCCSP). 2014, pp. 36–39. doi: 10.1109/ISCCSP.2014.
6877810.

[5] Roberto Medico. “rob-med/awesome-TS-anomaly-detection”. In: (2020).
doi: 10.5281/zenodo.3972944.

[6] Stan Salvador and Philip Chan. “FastDTW: Toward accurate dynamic time
warping in linear time and space”. In: KDD workshop on mining temporal
and sequential data. Citeseer. 2004.

[7] Chee-Wooi Ten, Junho Hong, and Chen-Ching Liu. “Anomaly Detection
for Cybersecurity of the Substations”. In: IEEE Transactions on Smart
Grid 2.4 (2011), pp. 865–873. doi: 10.1109/TSG.2011.2159406.

[8] Venkatesh Venkataramanan et al. “Measuring and Enhancing Microgrid
Resiliency Against Cyber Threats”. In: IEEE Transactions on Industry Ap-
plications 55.6 (2019), pp. 6303–6312. doi: 10.1109/TIA.2019.2928495.

8


